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WING SECTIONS.

RlmJ-Ma

contains a new, simple method of calculating the air forces to which
at small aqks of attack, if their curvature is not too meat. Two

simple h-tegrals are the resuk The; contain only the coordinates of the wing s;ction. The
first integral gives the angle of attack at which the lift of the wing is zero, the second integral
gives the moment eqyrienced by the wing when its tingle is zero. The two constants thus
obtained are sufficient to determine the Iift and moment for any other amgleof attack. This
refers primarily to a two-dimensional flow in a nonv+cous fluid. However, in combination
with the theory of the aerodynamical induction, and with our empirical lmowledge of the
drag due to friction, the results are valuable for actual wings also. A particuhr result obtained
is the calculation of the elevator efFect. The following is an outline of the subject m treated

.-

in this report:
L
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Introduction.
Calculation of the elevator effect.

.

General formula for any section.
Examples of the zero angle.
Thin sections with upper and lower boundaries.
The moment coefllcient.
Examples of the moment coefficient.
Table of the sections investigated.

I. INTRODUCITON.

By changing the angle between the stabilizer and the elevator &e wing section formed
by the combination of stabilizer and elevator is aMered, and this ahration gives rise to new
aerod~amical forces. It is useful to discuss this phenomenon from the theoretical point of
view, however imperfect the result may be as a consequence of negkcting the viscosity of the
air. A theoretical investigation at least gives the limit of what to expect. It enabke the

.-

invedigator to survey and keep in mind a great number of isolated experiences, whether the
agreement between theory and eqerience be more or less close. It induces him to reflect on
the phenomenon and thus becomes a source of progress by guiding him to new observations
and experiments. It has often o&mrred even that some relation was thought to be confirmed
by experience till the progress of theory made the relation improbabl~ And only then the

-.

experiments coniirmed the improved relation,. contrary to what they were supposed to do
before. A very conspicuous example of this is the discovery of differences in the atomic weight

—

of certain elements. But is it really necessary to plead for the usefulness of theoret.icd.work’?
This is nothing but systanatical thinking and is not usek.s as sometimes supposed, but the
difficulty of theoretical investigation makes many people dishke it.

In this fit section I wish to give a short summary of the theory whiihhI am going later
to ~pply and to expand. This theory- deals with the relation between the shape of a wing
section and the air forces applied to it by a nonviscous fluid. Only the two-dimensional prob-
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lem is considered. The theory thus forms the completion of the theory of the induced drag,
in which latter the three-dimensional arrangement of the wings and the lift produced by them
alono is considered, without paying attention to the details of producing the lift. The valuo
of the induced drag and the effective angle of attack of every part of the wings result from
the calculation. The theory of the wing section, however, gives no drag at all, for the drag
additional to the induced drag is due to Vigcosity. Nor does the theory of the wing section
give the true value of the maximum lift. It can be stated, therefore, that the theory of the
wing section in its present state gives na indication whatsoever of the practical duo of the
wing investigated. Still there remain three important piec~ of information which can be
derived from the theory, all more or less agreeing with the real phenomenon. These are the
relation between the mgle of attack and the lift, in particular the angle of attack for zero lift,
the travel of the center of pressure, and the distribution of pressure. It has to be kept in mind
that the angle of attack thw calculated for a particular lift coefllcient is not yet the true angle
of attack of a fits wing. The induced angle of attack has to be added.

We are indebted for the theory of the wing section to Kutta. He showed how the mdhod
of the two-dimensional potential can be used to calculate the flow around wing sections and
hence to deduce the rwdting air forces He confined himself to the straight line and simple
circular segmtmts. Hk idtia is to pick out among the multitude of possible potential flows
that particular one around the wing section, whioh at great distance degenerate into parallel”
flow and which leavee the wing section at the rear edge. His results are simple and important.
The direction of the air flow in the caste of zero lift of a circular segment of snd curvature is
parallel to the he dividing into equal parts the angle between the chord and the tangent at
the rear end. The lift is proportional to the sine of the angle of attack. The slope of the curve
of the lift coefficient plotted against the angle of attack is ahnost independent of the shape and
is 2~ (the angle being measured in arc tmd the lift”&fEcient being formed by dividing the,
lift per unit of area by the dynamical prmsure). That is, for small liit:

Joukowsky extended the theory, and investigated sections which at their rear end ahnost
coincide with a circular segment, having there a common tangent for the upper and lower
side: The entire form is generated from the circle, a circular segment forming aa it were the

,—

skeleton of a Joukowsky section. Considering the connecting line between the rear edge and
a pole near the center of curvature of the leading edge as the theoretid chord, the de for tie
direction of zero lift remains as before. The slope of the lift curve is hardly changed; the lift
is proportional to the sine of the angle+ as before.

Karman replaced the circular segment in the ,Joukowsky section by one formed by two
circular segments. This is already mentioned in the second paper of Kutta. These sections
have two different tangents at the rear end, and the line which divides the rear angle into two .
equal parts determinw the direction of zero lift together with the theoretical chord as before.
The law for the lift is the same again as for the circular segments of Kutt~ Mises dkcwms

.-

in a general way how to obtain even more general sections and proves some general theorems
concerning them The most important is the theorem that the slope of the lift curve plotted as
before is never smaller than 2F, and is alwajs exactly 2Uif the section is thin and the curvature
small. So far it.can be stated that only sections are investigated, the medial line of which is a
circular segment. If the section is only moderately thick and if the curvature is moderate, too,
the lift agrees with that of the segment according to the law found by Kutta.

II. CALCULATIONOF THE ELEVATOREFFECT.

In this paper I%tend to investigate any thin section of small curvature at small angles of
attack. It is necassary to discuss fist more closely the method used by Kutta for the calculation
of the lift of a wing section. He starte with an entire circle, and considers the potential flow
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around it, which was well known before him. It can be obtained by superposition of the sym-
metrhd flow around the circle and a vortex in the center of the circle. By changing the strength
of the vort~~ the point where the flow leaves the circle can be chosen at will for any given direc-
tion of the flow at a great distance. The lift produced by the flow is proportiomd to the product
of the velocity at a great distance and the strengg-hof the vortex. It is not essential for the
calculation that the described flow never really occurs; it is only a means of calculation. Kutta
transforms now the phme in such a way that it remains unaltered at a great distance from the
circle. The circle itself, however, is transformed into a new curve, the wing section to be invwti-
,gated. The transformation has ta bo of that kind which is calhd isogomd and leaves in general all
a@es ~~tered. It is well known that each analytical function gives such atrsnsformation, the
plane represented by complex numbers. The rear ~ae of the new section corresponds to one
particular point of the circle. After havhg found this point it is only necessary to determine
the lift of that flow around the circle that leaves the circle at that particular point and at a
great distance has the wune magnitude and direction as the flow around the section investigated.
This lift equaIs the lift experienced by the section.

The simplest case, the one, moreover, which I need in the following development, is the
straight line. The transformation of the circle with the radius 1 and its center coinciding
with the origin of the system of coordinate into the straight line connecting the two points
f=-2 ~d t=+ 2 is expressed by the analytical function

(1)

For-large vahws of z the function degenerates into ~ and hence leaves the plane unal-
tered at a great distance. The rear edge of the straight line ~=+ 2 corresponds to the point
z=+ 1 of the .circle. lkch point of the straight line corresponds to those two points of the
circle which have half the abscissa. It is Imown now that the lift of the circie for the flow which
leaves it at the point*+ 1 and whose direction at a great distance has. the angle a with the
real axis is

8rv@u

for the unit length of the cylinder. More generalIy the Iift is r times as great if r is the radius
instead of 1. The lift of the straight hue, or the rectanggm plate represented by it, is the
same, and the lift coeflkient therefore, since the chord has the length 41 is 2r sin a.

It is not necessary for the foIlowing development to enter into the details of the flow around
Kutta segments, or Joukows& and KarmmI sections. I at once proceed to the subject of this
paper. In his paper -Karnum speaks of the possibility of finding the transformation for any
section approximately, if this section differs but dightiy from another section the transforma-
tion of which is known. He gives also the formulas for the approximation, but he doea not
prove them. I proceed to apply a method obviously similar to that of Karman. The formulas
I obtain, however, do not agree with those given by him. I am going h study the eflect of an
in@itesimal change of a section, and I chose as the original section the straight line. I begin
with the investigation of a broken line, the two portions of which form ahnost 18Q”. This
broken line represents a tail plane, the devator being slightly turned from the mean position.
The length of the tail plane ~ 4? the two ends coincide with the ends of the original straight
line at the points t=*2. This ISnecessary, “thefunction of tran..formation be~~ unsteady in
these two points. ‘I@ lift produced by the small change of the shape is qmdI, too, of course,
but the ratio of the effect to the change which causes it is finite and can be calculated.

53xn-~17

:---

-—

.—-
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hnagine the straight line and the circle drawn in F~ure 1 and above the straight line the
new section consisting of two straight lima.. The ordinates of the new section may be called

-i
FIG. 1. Transformation of the tail plsne.

,Eand the abscisw z. If y, and y, denote the ordinates of the intersection pointa of the two
lines of the new section with the imaginary axis, we have:

‘% 25for the one part and

2+x
t% ~ for the other.

I try now b iind the curve in the neighborhood ~f the circle which corresponds ti the new
section according to the transformation:

(1)

-.. ..~,

The derivative of ~ with reference to 2 is:

(2)

Introducing the angle P between the real axis and the radius at each point of the circle, the
points of the circle are represented by— .- 4..

(3)
and (2) can be written—

(4)

d{ is the change of the originally

(5)

straight tail plan%and equals i & that is t~ say is:

d~=iy, (l– COSp)
on the right side of the hinge and

(6) df=iyl (l+COS $7)

on the left side .of it, the positive real axis being supposed to be drawn toward the right from
the hinge. .-

At the hinge .(5) and (6) agree, the angle corr&yonding to the abcissa of the hinge being
denoted by p,, it follows therefore that-

y2 (1– Cos (fO)=y~ (1+ Cosp,)

(7)
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By substituting (5) resp. (6] in (4) I obtain

(8)

!249

and the radial small dis tame of the new curve from the original circle is

(9)

(10)

The problem is now to transform the original circle Z=ePi into the curve # (1+ T) so that the
value at infinity remains unaltered.

For the present it is not necessmy really to perform this transformation; it is sticient
i% imaatie the transformation performed approximately by the function:

(11) (1–1 l+; +fi+;*+ . . . .~–z )
where the a% are coefllcients to be determined properly. This transformation indeed leav-es
the pkne at tinity unaltered. It is exact if q approaches zero. For the codicients are
imagined to be determined by the following method. Let q be developed in a Fourier’s series
between 0 and 2r.

(12)
+X4, Cosp+~ Cos2p+4 00S3P+ +~=;AO
+Bl Sk P+B2 sin 2y+B, sin 3P+ +

As is well known, the coetlicients A and B are the int~”fi:

If, as in this caset the section has no thickness, the coefficients A are d identically zero.
The coefficients a in (11) maybe formed according to the equations:

a.=–(A.+iBJ
*

This transformation does not give the desired transformation exactly. The point of the circle
z = t+ is transformed into the point.

1

{

l–AI COSP-B, sinp-Az COS2P– Bzsin2P– –
~=e-”[ +i(A12P-Bl COS q+A2 SiU 2P–B, COS 2P+ – I

~ being supposed @be very small, &=e–~1(1 – q)1the value desired. Hence the point repre-
-1

sented by (14) does not exactly coin~de with the new curve in the neighborhood of the circ~e,
but differs from it by the last two brackets of (14). The difhrence is, however, small when
compared with q. For the additional vector is parallel to the circle, so is approximately the
q-curve. The end of the vector z is therefore situated almost at the curve, but for a diflerent
radius vector than that of the original point of the circle z. (14) can be considered as the

--

.-

-....—
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Site for P= O, T= O, the curve which by the transforma-

tion t= ~+ $ is transformed into the modiiied tail surface coincides with the circumference of

the original circle at its two ends. The problem then @ to see by how much the point uf the circle
z= 1 at the end of the diameter is displaced by the transformation (1). This may bc calculated
easily, as will be shown. When deduced it will give the value of tho additional vector, which
we may assume can be used for other points in the neighborhood, too, because it is a continuous
quantity. So, the point of the circle corresponding to p= Ofor the transformed curve is dis-
placed an amount equal and opposite to this.

The position e~’iof the point of the new curve corresponding to the point z = 1 of the circlo
is found by using equation (14) and substituting p= 0, q is zero at-that point, the cl.iangcd
section coinciding at the ends with the origiial_ section. All sines arg zero and there remains:

(15) ~-wf=l–~(~l.+~l+~a++ . . . . ““

The righhhand side of (1.5).is approximately equal to e-@l+E’~J Hence —

(16) k%=~l+&+G++ “ “ “ “
—

It “would be possible to determine the B’s and to find the value of PI by adding thcm.
This procedure, however, can be simplified. By going back to equation (13), (16) cnn be written:

(17)

%

J%=;1 q (sin gJ+ein2p+sk 3p++)dP.
o

The bracket in (17) is formally the development of cot 4 p in a Fourier’s seriw, t,hough
indeed th~ series isaoh conwwgent. For

or

This transformation

and divide this by

The result

.Q [
1

(cos~+l) (2cos(n– l)w+2cos(n–3)p++ dpifnis

odd.

=+J [“ 1(cosrP+l) (2cos(n–l) P+2cos(n–3)P+++l d~

if n is even.
sin n~

of -9111q resulL9tho most simply if we go back to the equation

fIinnp =~z (e*i - e-nqi)

e(n-1) d + ~(n-3) d+ e(n–5)d .+ . . .

●
is identical with

2 cm (n–l) p+2cos (7L-3) p++ -. + 1 if n is even.

In both cases, whether n be odd or even, (18) equals i. ~d ~~o~h the bracket in (17) iS
not ~onvergentl. the integrrd (17) is convergent in general and can be,written.--, .

(19)
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(17) represented as we remember the angle of the radiuq vector through the point of the curve ‘
corresponding to the point z= 1, q= O of the circle. According to what has been said, tha
point of the circle corresponding to point p= O of the curve has the radius vector

(20)

1 have thus obtained the point of the circIe corresponding to the rear edge of the curve
investigated. The Iift of the section equaIs the lift of the circle provided that the poten&d

-.

flow leaves it at the point determinate. The lift is zero, in particukw if the-circulation vanishes
and the ffuid flows symmetrically around the circle.

..~
It is easy to see that in that case the velocity

at inbity is paralIel to the radius vector of the point determined. Hence it appears that the
aOjust found k the angle of attack for the “section investigated necessary for zero lift, i. e.
is the c’angle of zero Mt.”

I at once proceed to calcul”atathis integral for the present problem. q has ta be substi-
tuted from equation (10) and (11). Hence the integral for a, consists of two parts:

(21)

The solution is

(22)

%bstituting (7) for y, I obtain fhdly
—w

(23)

For positive VI, that is, for the elevatcr bent down, a, is negative. The flow around the circle —.

being horizontal at a great distance leams the circle below the horizontal axis. Such an ele-
vator with the line of connection of the two ends of the whole tail plane horizontal experiences
a positive lift therefore accorclkg to the rmult of the development.

At the same time the stabilizer is no longer horizont.aI and there remains an elementary
—

calculation in order to obtain the effect of the elevator separately. This is especially simple if ele-

$!I. me angle betweenvat.orand stabilizer are equal and hence PO=90°. Then (23) gives a.= —~

stabihzer and elevator is VI (the length of the whole tail plane being 4) and the angle of attack
of the.stabilizer is – @l. The positive turning of the elevator not only neutralizes the effect
of the negative angle of attack of @e stabilizer, but there is also the eilect of the angle of attack
y,/~ in addition. Hence the whole effect is y, (i + l/r) and per unit of angle of elevator to stabilizer

—-~

divided by the ratio of the elevator to the whole tail plane it is:

For other posmons of the hinge the ratio of the length of the elevatir to that of the tail plane
is ~ (1 – cos p$, the angle between stabilizer and elevator is:

-.

( l–cosff70 1
‘J” 2(l+cospJ+2 ) .

and the angle of attack of the stabilizer is

Y, o–Cos. 90)

2 (l+cospJ
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Let Kbe the coefi?icientwhich gives the effect of the eIevator turning according to the equation:

E
a ‘iWtive= E+JSI‘o “

.

a effective is the angle of attack of the whole undeformed tail plane which has the snme effect
as the turning of the elevator by the angle B; 27denotes the chord of the elevator and S the
chord.of the stabilizer. Then K is ~ _ . ..-

—,

.

‘-i(’-:;2a%’;oJ+9 ‘“”---

Substituting ceOfrom equation (2o), this can be written .-

==~$’o+~ PO
T1—cos q~

In Figure 2 the coefficient obtained is plotted against the elevator ratio ~~ =$. If tho

tail plane consists only of the elevator the coefficitit of course is 1 and the calculation givm

24 \
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FIG. 2. EIwator afbct” K“ plotted against devatorjtail plane.

this. The tests with flat tail plane models show considerably smaller values of K, about 1,3,
The entirely flat section is aerodynamically so bad that 40 per cent of the elevator eflcct is
lost. A test with a better shaped section, however, gave .K= 1.7, which agrees better with the
result of the theoretical calculation.

111.GENERALFORMULAFOR~Y SECTION.

The previous calculation of the angle of attack for zero lift shows that this angle is obtained
by integrating an expression which contains the,coordinate of the central curve of the section
investigated as a factor. Henw the angle for zero lift is a linear function of tho coordinates,
and the law of superposition holds true. That is to say, the zero angle of any section is the
sum of, the zero angles of my other sections if the coordinates of the fist sections are also the
sum of the coordinates of the other sections at each point. The result of the previous calcu-
lation hence holds true for thin tail planes also, the centrrd curve of which originally was not a
straight line but was slightly curved in any way. -And the result can be used also for the cd-
culation of the effect of two elevators in front and at the end of the stabilizer turned by any

small angle. If $ denotes the ratio of the front elevator of the entire tail plane, the factor Al

()is to be taken from Figure ? for $= I – $ and the factor K, of the front tail plane then is

K,= K’?
.

-1. This results by superposition of, the two tail planes, each with one hinge only.
●
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By increasing the number of the hiqgas, at Iast every shape of the section can be obtained.
It is more convenient, however, to go back to the second term of equation (21), which repre-
sents the part of the zero angle due to the stabilizer. lhmgine any curve to be composed of a
zigzag ke, comist~~ of an idnite number of p~w= of radii vectors orig~at~u ~ the lead~g

—

edge of the section and of connecting short vertical lines. (Fii. 3.) These vertical linw do
. .——

.,~..

..-. —.- -_..- —.-

~ . . . . . .
FI% 3. ZLg-regline ?epIacing the cume of m?tiom

not furnish a contribution to the integral of the zero angle; and this htegral is obt~incd bY
substituting in

—

(21a)

the value of y, for each point. This is, if g denotes the ordinate of the section

(24) .!
Y2=l_ms (p

hence

(25) .

Eliminating fhmlly the angle p and introducing instead of it the position z of the point of the
chord, z= +2 being the ends of the chord,

or, for the length 2 of the chord,

(27)

i-l
1

s
E(ZE

~o= —;

(1- Z)-JI=7
-1

In the general case that the length of the chord is t the gngle is

—-

.-

.——

-—

—

we integral (27a) is the essential redt of the pretious development. The problem I am
dealing with is the calculation of the theoretical lift of a line-shaped section of small curvature. .-
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For this calculation I first deduce the angle of attack which gives the Iift zero. I cl~ooso the
scale so that the’ chord is 2. On this curie with the ordinates Efrom the. chord and tho roar
edge at the point z = 1 of the chord, the other end having the abcissa z = – 1, I apply the intagral
(27). The angle of zero lift toward the chord resuhk Omitting for the moment tho induced
angle of attack, the theoretical lift is then

L=2 n- v’; sin ((Y-c?o) 8

It is exact- enough to replace the sine by the angle: Introducing now the induced rmgle of
attack

L
.—

q.- 57.3 in degrees.
d= p!

2

.-

while h is tbe span of the monoplane, the angle of attack corresponding to any lift is

——2

IV. EXAMPLESOF THE ZERO ANGLE.

In this part I proceed to calculate some examplw of the zero angle. It is sufficient to
calculate some typical curves; any more complicate_d one can be created by superposing of
these.

(a) The section may be represented by the curve

where y is a smaIl quantity and denotes the greateatordinate. This curve is typical of simple
symmetrical arm, like a circuIar segment of practically cor&ant curvature. The integral (27)

is now - .- -.

+1
1

s

l–~s
a~=— -

~y (1 -t-x)~dz
-1

+1

:Y= ---
N

~zdx
_l 1+X

+1

y arc. sinx+~%T-—-
-1

q)= —y.

The angle between the tangent at the rear edge and the chord is – 2y. In accordance with
the res.u[tsof Kutta, Joukowsky, and Karman the direction of the zero flow is that of the line
which divides into two equal halves the angle between the rear tangent and the chord,

(b) The example of the section consisting of two equal straight linas is contuined in the
second part of this paper. This section lies above the preceding at u1lpoints if the end tangents
coincide and it is to be expected therefore that the zero angle is greater. It was found to be

~ of the rear angle between the elevator and the chord.
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(c) Unsymmetrical sections consisting of two or three straight lines are contained in
section II of this paper.

(d) A continual unsymmetrical curve can be obtained for instance by the expression

~=y(l+z)”(l–z)m

For m= n = 1 the segment discussed @A results. The zero angle is

The integration is especially simple if m= 3& Then I obtain

-!-1

Ja,= –f (1–Z) ‘-%ik
–1

the integral is

IIa,=–3(1–z)“+1+1n-rl+;
-1

and the angle has the value

3
‘–5The maximum of the section has the abscissa —3 , or, otherwise expressed, its d~tancc from
n+-

2

the leading edge is ~ of the chord. For the symmetrical case n= 3/2 the angle results

q= –y:

y S TIMmaximal heightFor n=2.5 the maximum is at 5/8 of the chord. The angle results– ~ ~.

is 1.14 y.
(e) A section with a positive and negative curvature”is

E=–y(l+z)(l–dz
i-1

s d–
the zero angle is~=-~ z ~dz

–1

(fl An example which is important in actual applications is a section which coincides with
the chord at the front half of the chord, the second hslf being represented by the equation

~=y(l–z’)a?
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At x= O the section has a horizontal tangent, The angle of the rear tangent is 2y. The zero
angle for this section is

J-

= _g ‘YJ1–x’h “%= 1+X

If the section is given graphically or by a table, the zero angle can be determined numeri-
cally. For this numeric.d calculation the following table can be used:

TABLE 1.

~::~. FEE <F : .% f f +“””:-
2.38 CLS41 &#s 0.314 0.232 CL181 0. 161) 0,128 0.112

.. ==, . c=

Porcant of chord . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . m @ &# m 75 m ~ ~ ~ ~. s
—. — — - — . ——

Foctor . . . . . . . . . . . . . . . . . . . . . . .— . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.m 0,0s5 O.rlsl g.0?s 0.076 a 078 am am a.xm ,0. OM
‘— ..— - .+ -.. —

Determine the ordinates of the section starting at the chord. If the curve runs beneath
the chord the ordinate must be considered negative. The chord is supposed to be divided
into 100 per cent, O per cent being at the trailing edge and 100 per cent at the le’adlng edge.
Now multiply each ordinate for the per cents given in the first line of Table 1 by the factor

57.3given in the second line and add all products obtained. Their sum multiplied by – ~

gives the angle of attack in degrees at which the lift is zero. The chord and the ordinates of
oourse have h be measured in the same units.

V. TIUNSECTIONSWITHUPPERANDLOWERBOUNDARIES.

If the section has some thickness so that the upper and lower boundaries no longer coincide,
the coefficients A in equation’ (13) are no longer zero. The section can be imagined to bo
created by first drawing the line of connection of all points equidistrmt from the uppm rmd
lower boundaries, which I will call the central curve of the wing section. Afterwards the
thickness, which is supposed to be d when compared with the chord, ia created by adding
equal distancw on both sides of the central curve. The.coefficients B of equation (13) depend
only on the central curve, the coefficients A only OR the added thickness, The integral for
the zero angle containing the B’s only and not the ;4’s, it can be supposed that the section
with but a small thickne~ has the same zero angle and lift as its central line.

However, two things are then to be considered. A. in equation (12) is now no longer
zero, but has a small finite value. Hence the first factor in the bracket of (14) is somewhat
greater than 1 and hence the lift is slightly increased. It is not necassary, however, to pay
attention to this fact. The real lift is always slightly smaller than the theoretical lift and the
result is likely to be better if this refinement is neglected.

~nother more serious difficulty occurs at tho transformed leading edge of the section,
If the leading edge of the section is blunt, its transformation shows a picture as in Figure 4. The
new curve is no longer approximately parallel to the circle at the leading edge, but has an
irregularity. The assumption for the correctn~s of the transformation (14) holds true no
longer.
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Thiicanberemedied, however, byaddin~area to thecentralcurveall around theleadingpoint.
The corner in Figure 4 is then tihd and the resulting curve is smooth again (Fig. 5). The
integral (19) is not affected by this change, if the addition is symmetrical. The increase of
the area of the new curve is small even when compared with the original increase. The depth
of the small triangle is filled if the added d~tance in the direction of the chord is as great as
the thicbes of the section near the leading edge. Hence the tie arises to make the central
curve of the wing section end in the center of curvature of the leading edge.1 The zero angle
for a thin section with two boundaries is calculated as before, substituting in integral (27)
the coordinates of the central curve from the rear edge to the center of-curvature of the leading

~“–+‘“+’‘4._-.-._.

,. “~ - ‘=.---’’”
FIG. 4. T1’SIt3f0~ffIZllOfth@head e4s FIG. & TrmsfmmatIcm C4the herd of a

thick 532t[OtL tlick wttq the eentrd cume endhg
at the mtec of curvature.

edge. This central curve has to be brought to the standard length 2. The lift, however, is
to be calculated as before, with the entire chord.

VI. THE MOMENT COEFFKTENT.

The previous discussion can easily be completed by the calculation of the moment which
the thin section with small curvature experiences at small angles of attack. Remembering
that the angle of attack a is a small quantity, the velocity of the flow along the circle, frequently
mentioned before, is

2vo(sin q–a 00s p+(a–d)

and the velocity at the corresponding points of the straight line is

(28)

only the term – a cot p contributes to the moment around the middle point z =0, and th~
moment for the chord 2 is

(29)
xl T

3f’=-rptrT—’— =——a

pp?$ 2

After the variation of the chord into the section, the velocity at each point is only slightly
changed in general. The variation is calculated by determining the variation of the potential.
The corr~ponding point of the circle has no longer the same angle p, but the angle P is increased
by a smaIl quantity which may be denoted e and is given by (14).

–Alsin P–AZ SiIl 29– –
The variation of the potential is

2Evosinp

as a first approximation; and hence the variation of velocity at the points of the section is

1A mbeequantInwgtigetton* thstit19 betterto ti thet pintesed ofthe centrsl mrvewblehdtvfdeafntotwoeqnel
p3rk3thedhtaucebetweanthecmter ofuuvatore end the I_edge. I ehallshow tMsin &later wper.
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—
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The variation of the pressure is the product of density, original velocity, snd variation of velocity.
The moment is the integral of this variation of pressure, multiplied by z & = – 4 cos w sin P
and therefore equals

(32)

all quantities being omitted

Now

‘“de ‘.K )‘-8V2P d~cos ‘Sm ‘+ Ecos’p‘p
o

which contain the product of two small quantities.

de –B, sin P-2B, ”sin2P––
6=–A, 00S P–2A, cos2p-–

Substituting e and $@ only the terms with B contribute to the value of tbo integrtd, tmd I obtuin

B, was determined by

or, expressed as a function of x,
+2

B,=–;i
J

.— -.. ..—
_,g rG/2)% (1 +x/2)4

&

Substituting this, I finally obtain for the moment

(33)

+2

hi, =2 Vo’p

h-n

_* @
a

1– ;
-2

tho corrmponding absolute coefficient is .

-I

for the chord =2

The entire moment around the middle of the section is expr=ed
which is ~hesum of the two obtained coefficients

(35)

+1
M

J

z .@X

—=-a;+ m
—...—

ISt v’;
-1

by the absolute coefllciont

If the front and rear half of tho central curve are equalj the integral in (35) is identically z@o.
The coefficient of moment then is

- a;
.

.

This agrees with the result of Kutta for circular segments.
For sections with differant upper ~d lower boundaries the. central curve is to be taken

again.
The numerical calculation of the intqgral in (35) can be performed by using the next tabie.

.-
. .

-,--- —
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TABLE 2.

‘2wwt0ftiff&-”-”-------”--”--””---+d+H+h+i=l=H+Factcc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wllEHaa=++=Pefcentofch.Wd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Fmtw .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . ..&OlO

The procedure is amdo.~e as with the wdculation of the zerg an@e. The sum is to be rnul-

tiplied by ~ in order to obtain the additional coefficieritof moment. The calculated coeftkient

of moment has not yet the same meaning as the moment coefficient C. ordintiy used. This
coe.fiicient has reference to the leading edge and not to the middIe of the section. Calling the
integral in (35) the additional moment codicient CLathe ordinary moment coeflicienttc.
redts

-!-1 .

sC.=–.;+,_ gp+io=.
(36) Cm= 0.25 G- ;%+ CmO

The center of prwsmre has the position

)37(

VII. EXAMPLES OF THE MOMENT COEFFICIENT.

The additional moment coeilicient is different from zero for unsymmetrical sections only
and I proceed to calculate ib for the two unsymmetrical sections discussed before.

This wss fit the section which in its front half was a straight line *din its rear half was
repr~ented by the equation

&= –y (1–~) @
The additional coefficient of moment ~~ is

c I=y;(1–d)w-+ (l–&)*
‘0 1

2 .
= –~%

.1s a second example take the S-shaped curve
g= –y (l–&)x

“(l –&)& (LC

scm”=-y_* m
+1m

J0=0= –y Xq=2 (ZX
-1

1+

. .

.—-
.—..—.._—.-

---

P.o= –: y
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The values obtained have to be substituted in formula (36) or (37).

Equation (37) shows the titer of pressure to be constant if ~%= 0~0;

that is to say, if the moment coefficient is zero for zero lift. In most practical cases the right
hand additional moment is too small to neutralize the moment at zero lift, The condition is
fulfilled, however, for all sections with straight central curves, the moment to be neutralized
being then zero too. These are not the only sections; however,

Theoretically, every tail of a section can be modified, so that the section has no longer
-.

any travel of the center of pressure, by superposing on the section the section discussed last
but one, representing a bending upward of the tail.

A calculation shows, howeyer, that this proceeding” is not effective enough if the section
was very unstable ad does not lead then to good sections. Consider, for instance, the case
of superposing a circular segment ~d this curve. T& sgctiog. ,may have the equation —

t=% (1–@ +y, (1–dz’
at the rear half, the front half is circular as before. The zero angle of this section is, according
to the previous”calculations

the additional mormmt is
ao- –Y, +0.64 y,

2
–~Y2

and the condition of constant canter of preaeureis

It follows that

_ —.7 — 7 —-B_:L------ _e -———— -—,

—..--. _ ,’

//~

:~+

_—— - ~.<.
4/ / .. . .

(~ ---- ~a——.
— —- ,., ... . .

-—--- -..
=~ - \_

( _ ~ —:7 — Y.-.? —

7

ii-oo”d+
y,=.725 y,

TABLE 3,

-.. t
Equation Ofibnpe.

I a.
I

. .
.+0 - ‘“’ 0

1’

1“
-r

.. -u:

O behvcen –1 and O
C-@(l-@) bet’mm Oand ●1 ‘W)

-. .

o

0

0

,. =.. .-

,:..-:
.; .’....

. ------.,
-.. . c

:.:

.—..

. . . .
.- .-
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